Flash freezing route to mesoporous polymer nanofibre networks

نویسندگان

  • Sadaki Samitsu
  • Rui Zhang
  • Xinsheng Peng
  • Mohan Raj Krishnan
  • Yoshihisa Fujii
  • Izumi Ichinose
چکیده

There are increasing requirements worldwide for advanced separation materials with applications in environmental protection processes. Various mesoporous polymeric materials have been developed and they are considered as potential candidates. It is still challenging, however, to develop economically viable and durable separation materials from low-cost, mass-produced materials. Here we report the fabrication of a nanofibrous network structure from common polymers, based on a microphase separation technique from frozen polymer solutions. The resulting polymer nanofibre networks exhibit large free surface areas, exceeding 300 m(2) g(-1), as well as small pore radii as low as 1.9 nm. These mesoporous polymer materials are able to rapidly adsorb and desorb a large amount of carbon dioxide and are also capable of condensing organic vapours. Furthermore, the nanofibres made of engineering plastics with high glass transition temperatures over 200 °C exhibit surprisingly high, temperature-dependent adsorption of organic solvents from aqueous solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrophilic polymer nanofibre networks for rapid removal of aromatic compounds from water.

Hydrophobic mesoporous polymer nanofibre networks were converted to hydrophilic ones by a mild sulfonation reaction. The resultant mesoporous polystyrene with a large free surface area effectively captured water-soluble dye molecules and allowed aromatic compounds to rapidly permeate into the internal binding sites.

متن کامل

Fabrication of continuous highly ordered mesoporous silica nanofibre with core/sheath structure and its application as catalyst carrier.

A core/sheath structured mesoporous silica nanofibre was prepared by coaxial electrospinning combined with the solvent evaporation induced surfactant assembly process. The characterization has given convincing evidence for the continuous highly ordered mesoporous structures, and its catalyst application was tested.

متن کامل

Incorporation of Ni(II)-dimethylglyoxime ion-imprinted polymer into electrospun polysulphone nanofibre for the determination of Ni(II) ions from aqueous samples

Ni(II)-dimethylglyoxime ion-imprinted polymer (Ni(II)-DMG IIP) was encapsulated in polysulphone and electrospun into nanofibres with diameters ranging from 406 to 854 nm. The structures of the Ni(II)-DMG encapsulated-IIP nanofibre, non-imprinted encapsulated-polymer nanofibre and polysulphone nanofibre mats were observed by scanning electron microscopy and evaluated by infrared spectroscopy. El...

متن کامل

Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach

The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as ‘long-range’. We use van der...

متن کامل

NDT characterisation of carbon-fibre and glass-fibre composites using non-invasive imaging techniques

The prerequisite for more competent and cost effective transport has led to the evolution of innovative testing and evaluation procedures. Non-destructive testing and evaluation (NDT & E) techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. Smart methods for assessing the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013